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Fat is stored in adipose and in other tissues, such as the vertebral marrow and skeletal 
muscle (1–3). An excess infiltration of fat inside the muscle, which also occurs in skeletal 
muscles, is an important finding associated with several diseases such as impaired glu-

cose tolerance (4), insulin resistance and type II diabetes (5), obesity (6), reduced muscle activ-
ity (7), clinical fractures (5), myositis, and probably cancer (8). Many studies have also reported 
increased fatty infiltration within the paraspinal muscles of patients with low back pain (9) and 
long-term denervation (10). The fat content within skeletal muscles may be influenced by age 
and sex (11), training situations (12), inactivity (12), and recently performed exercises (13). The 
extent of muscle fatty degeneration may be useful for diagnosis and treatment of some dis-
eases. Bone marrow is a complex heterogeneous admixture, consisting of both hematopoiet-
ic and fatty marrow. In humans, increased vertebral marrow fat occurs with osteoporosis (14), 
aging (15), alcoholism (16), starvation (17), prolonged bed rest (18), spinal cord injury (19), 
cancer metastasis to bone, chemotherapy and radiation therapy (20). Among these diseases, 
osteoporotic fractures have a very high morbidity and mortality. Lifetime risk of any osteopo-
rotic fracture is very high and lies within the range of 40%–50% for women and 13%–22% for 
men (21). Bone marrow fat plays an important role in bone loss; the measurement of marrow 
fat content might be a helpful tool to promote our understanding of osteoporosis. In partic-
ular, it could act as a marker for neoplastic bone marrow diseases and bone marrow healing. 
Therefore, an effective approach for quantitatively evaluating muscle and marrow fat would 
include accurate detection of disease and accurate grading of disease severity (22), to devel-
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PURPOSE
We aimed to assess the reliability of measuring the fat content of the lumbar vertebral marrow 
and the paraspinal muscles using magnetic resonance imaging (MRI) mDIXON-Quant sequence.

METHODS
Thirty-one healthy volunteers were included. All participants underwent liver mDIXON-Quant 
imaging on a 3.0 T Philips MRI scanner by observer A. Within two weeks, observer B repeated the 
scan. After the examination, each observer independently measured the fat content of the third 
lumbar vertebra (L3), and the psoas (PS), erector spinae (ES), and multifidus (MF) muscles on 
central L3 axial images. After two weeks, each observer repeated the same measurements. They 
were blinded to their previous results. Reliability was estimated by evaluating the repeatability 
and reproducibility.

RESULTS
The repeatability of the fat content measurements of L3, PS, ES, and MF was high. The intraclass 
correlation coefficients of the fat content of L3, PS, ES, and MF were 0.997, 0.984, 0.997, and 0.995 
for observer A and 0.948, 0.974, 0.963, and 0.995 for observer B, respectively. The reproducibility 
of the measurement of the fat content of L3, PS, ES, and MF was high, and the interclass correla-
tion coefficients were 0.984, 0.981, 0.977, and 0.998, respectively.

CONCLUSION
Using mDIXON-Quant imaging to measure the fat content of the lumbar vertebral marrow and 
paraspinal muscles shows high reliability and is suitable for use in clinical practice.
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op interventions for reducing the risk of os-
teoporosis and type-2 diabetes mellitus, and 
treating myopathy (23).

The fat content of the lumbar vertebral 
marrow and paraspinal muscles can be 
quantified by different methods, each with 
its advantages and drawbacks. Biopsy is 
an invasive procedure with a substantial 
degree of sampling error. Ultrasonography 
(US) is an alternative method for assessing 
intramuscular adipose tissue, based on 
echo intensity (24). US assessment for ste-
atosis is usually subjective and significant 
observer variation can occur (25). The as-
sessment of fat content through computed 
tomography (CT) is based on the character-
istic attenuation of X-rays by different tis-
sues, and lipid infiltration is the most widely 
accepted reason for decreased attenuation 
of muscle (2). Magnetic resonance imaging 
(MRI) appears to be the most objective and 
sensitive imaging method for the identifi-
cation and quantification of marrow and 
muscle steatosis. Unlike US and CT, which 
assess muscle steatosis by proxy param-
eters (echogenicity and attenuation, re-
spectively), MRI and magnetic resonance 
spectroscopy (MRS) can assess the amount 
of muscle fat content and marrow more di-
rectly. In comparison with previous studies 
(1, 26), MRI techniques possess the advan-
tage of noninvasive tissue characterization 
in vivo for providing information about 
muscle structure, architecture, and metab-
olism in a single examination. MRI can be 
utilized to quantify the actual fat content 
of marrow and muscle noninvasively and 
repeatedly within the identical volume, and 
it is patient-friendly (27). The multi-echo 
two-point DIXON-Quant (mDIXON-Quant) 
sequence is a three-dimensional fast-field 
echo (3D-FFE) sequence that uses multiple 

acquired echoes to generate water, fat, and 
in-phase and opposed-phase images syn-
thesized from the water-fat images. DIXON 
techniques are now available on the major-
ity of clinical MRI systems with a different 
name (mDIXON, Philips; DIXON, Siemens; 
IDEAL, GE; and FatSep, Hitachi) (28). MRI us-
ing the mDIXON-Quant sequence has sig-
nificant advantages over MRS, such as rapid 
and volumetric data acquisition with visual-
ization of anatomical structures and quan-
tification of fat content in a region-of-inter-
est (ROI) (29). Multiple confounding factors 
including T2* decay, T1 bias, B0 field inho-
mogeneity, spectral complexity of fat, noise 
bias, and eddy currents were presently 
minimized with improvements of the tech-
nique (30, 31). T2* correction is the critical 
pre-step for quantitative water-fat imaging, 
and helps to predict the correct diagnosis 
of fat content in muscle and marrow (26). 
T1-bias effects were minimized by using a 
small flip angle excitation (30). Multiecho 
chemical shift-based water-fat separation 
methods have the ability to estimate and 
correct for field inhomogeneities using 
phase-correction algorithms (32), and the 
six peaks fat spectrum to model the spec-
tral complexity of fat (33).

Since there is nearly no restriction on 
the echo times, mDIXON-Quant is different 
from other magnetic resonance fat quan-
tification techniques. Full flexibility is pro-
vided by the sequence in selecting other 
parameters, such as scan time, resolution 
and field of view. The combination of fat 
fraction, T2*, R2*, water, in-phase, opposed 
phase images helps the radiologist for diag-
nosis. Tissue fat content measurement by 
MRI mDIXON-Quant is more efficient and 
accurate in a single sequence (34). How-
ever, only a few studies have attempted to 
measure fat content in the lumbar vertebral 
marrow and paraspinal muscles. This study 
aimed to assess the reliability of fat content 
measurement in lumbar vertebral marrow 
and paraspinal muscles utilizing MRI mDIX-
ON-Quant.

Methods
Study design and participants

The calculation of sample size was based 
on the following criteria: 1) intraclass cor-
relation coefficients (ICCintra) or interclass 
correlation coefficients (ICCinter) of less than 
0.75 indicating poor agreement and an 
ICCintra or ICCinter greater than 0.9 indicated 
good agreement; 2) the number of obser-

vations per each healthy volunteer was 2; 
and 3) the target value was 0.80 and the 
confidence interval (CI) was 95%. The esti-
mated minimum sample size required for 
analyzing agreement was 31 participants, 
based on Bonett’s approximation (35).

Criteria for inclusion were age >18 years, 
no systemic inflammatory disease, no prior 
spine surgery, no scoliosis. Exclusion crite-
ria were a general contraindication for MRI, 
prior spine surgery, presence of neurologic 
disorders, acute trauma, disorders of the 
spine, and systemic inflammatory disease.

The regional ethics committee approved the 
study and all participants provided informed 
consent (decision number: 201512-02).

mDIXON-Quant examinations and 
measurement

All volunteers underwent lumbar MRI 
mDIXON-quant on a 3.0 T scanner (Ingenia, 
Philips Healthcare) by one observer (X.C.) 
The second observer (G.G.) repeated the 
same examination within 2 weeks. Both 
observers had 15 years of experience. The 
mDIXON sequence is a 3D-FFE sequence, 
and uses multiple acquired echoes to gen-
erate water, fat, T2*, R2*, and in-phase and 
opposed-phase images synthesized from 
the water-fat images. The scan parameters 
of the single breath-hold mDIXON-Quant 
were as follows: repetition time, 9.1 ms; 
echo time 1, 1.33 Vms; 6 echoes with delta 
echo time, 1.3 ms; field of view, 180×140×90 

Main points

• An excess infiltration of fat inside skeletal 
muscles and vertebral marrow may occur 
with aging and is associated with several 
diseases such as impaired glucose tolerance, 
type II diabetes, obesity, inactivity, fractures, 
osteoporosis, alcoholism, bed rest, starvation 
and myopathy.

• MRI and MRS can directly and noninvasively 
assess the amount of fat content in muscle and 
bone marrow, providing information about 
their structure, architecture, and metabolism.

• mDIXON-Quant sequence may represent a 
useful tool to assess the risk of fat infiltration 
related to several diseases in clinical practice.

Table 1. Characteristics of the study partici-
pants (n=31)

Mean±SD Range

Age (y) 30.7±8.5 22–53

Weight (kg) 64.5±10.3 47–95

Height (cm) 167.8±7.3 153–185

BMI (kg/m2) 22.8±2.6 17.36–29.05

WC (cm) 82.4±7.3 68–99

HC (cm) 95.5±6 84–111

L3 FF (%) 35.05±11.02 19.87–64.96

PS FF (%) 3.46±1.28 0.56–6.21

ES FF (%) 5.32±3.55 1.12–18.85

MF FF (%) 5.39±3.29 1.44–19.38

SD, standard deviation; BMI, body mass index; WC, 
waist circumference; HC, hip circumference; L3, the 
third lumbar vertebra; FF, fat fraction; PS, psoas ma-
jor muscle; ES, erector spinae; MF, multifidus muscle.
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mm; flip angle, 3°; resolution, 2.5×2.5×3.0 
mm; sensitivity encoding, 2; number of sig-
nal averages, 2; and scan time, 12.5 s. ROIs 
were drawn manually on using an ISP V7 
workstation (Philips Healthcare). ROIs were 
drawn encompassing the largest region of 
the cancellous bone of vertebral bodies on 
central L3 axial image eliminating the ver-
tebral cortex, schmorl’s nodules or heman-
giomas (Fig. 1). The fat content of the psoas 
(PS), erector spinae (ES), and multifidus (MF) 
muscles was measured on the same central 
L3 axial image (Fig. 1). Clear cavities of fat 
at the periphery of the muscle area visually 
identify the edge of the muscle. Multichan-
nel images were output by the MRI mDIX-
ON-Quant sequence, highlighting water 
and fat in separate channels. We mainly 
use fat images to measure fat content, and 
different combination of images in the mul-
tichannel data could be applied to identify 
specific ROIs. Each observer independent-
ly measured these data, and after 2 weeks 
they independently remeasured the data 
while blinded to their previous results.

Statistical analysis
Reliability was assessed based on the re-

peatability of the intraobserver agreement 
between the two measurements made by 
the same observer. The reproducibility of 
the interobserver agreement was assessed 
by the measurements of the two observ-
ers for each volunteer. ICCintra or ICCinter with 
95% CI, and the Bland-Altman method 
were utilized to confirm the reliability of 
the mDIXON-Quant method in assessing 

fat content in the lumbar vertebral marrow 
and the lumbar paraspinal muscles. An IC-
Cintra/ICCinter less than 0.75 indicated poor 
agreement; an ICCintra/ICCinter in the range 
of  0.75–0.9 indicated moderate agreement; 
and an ICCintra/ICCinter above 0.9 indicated 
high agreement (36). Raw data were used to 
evaluate repeatability. The average results 
of the two measurements by each observ-
er were utilized to evaluate reproducibility 
(i.e., interobserver agreement).

Statistical analysis was executed utilizing 
SPSS for Windows, version 20.0 (IBM Corp.). 
A statistical difference level of α = 0.05 was 
used throughout.

Results
The participants were 15 men and 16 

women with a mean age of 30.74±8.46 
years (range, 22–53 years). The participants’ 
basic characteristics and fat content results 
of L3 and paraspinal muscles were sum-
marized in Table 1. The mean fat fraction 
of L3, PS, ES, and MF were 38.19%, 3.52%, 
3.48%, and 3.53%, respectively, for men, 
and 32.11%, 3.40%, 7.06%, and 7.14%, re-
spectively, for women.

Intraobserver agreement with the mDIX-
ON-Quant MRI was estimated using all of 
the original assessments of the 31 volun-
teers. As demonstrated in Table 2, the re-
peatability of the assessment of fat content 
in L3, PS, ES, and MF was high, and the ICCintra  
of the fat content were 0.997, 0.984, 0.997, 
and 0.995, respectively, for observer A and 
0.948, 0.974, 0.963, and 0.995, respectively, 

Figure 5. Reproducibility of the multifidus muscle 
fat content measurements between observer A 
and observer B. The Bland-Altman plot shows 
the average values and the differences in 
values between observer A and observer B. The 
differences between the assessments of observer 
A and observer B do not vary in any systematic 
way over the measurement range. 
mA, mean assessment of observer A; mB, mean 
assessment of observer B; MF, multifidus muscle; 
SD, standard deviation.

Figure 4. Reproducibility of the erector spinae fat 
content measurements between observer A and 
observer B. The Bland-Altman plot shows the average 
values and the differences in values between observer 
A and observer B. The differences between the 
assessments of observer A and observer B do not vary 
in any systematic way over the measurement range. 
mA, mean assessment of observer A; mB, mean 
assessment of observer B; ES, erector spinae; SD, 
standard deviation.

Figure 3. Reproducibility of the psoas major 
muscle fat content measurements between 
observer A and observer B. The Bland-Altman plot 
shows the average values and the differences in 
values between observer A and observer B. The 
differences between the assessments of observer 
A and observer B do not vary in any systematic 
way over the measurement range. 
mA, mean assessment of observer A; mB, mean 
assessment of observer B; PS, psoas muscle; SD, 
standard deviation.

Figure 1. Central L3 axial magnetic resonance 
image shows sample regions of interest that 
were used to calculate the fat content of the 
L3 marrow and the psoas, erector spinae, and 
multifidus muscles.

Figure 2. Reproducibility of L3 fat content 
measurements between observer A and observer 
B. The Bland-Altman plot shows the average 
values and the differences in values between 
observer A and observer B. The differences 
between the assessments of the observers 
do not vary in any systematical way over the 
measurement range. 
mA, mean assessment of observer A; mB, mean 
assessment of observer B; SD, standard deviation.
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for observer B (Table 2). The outcomes of 
the Bland-Altman plots and the ICCintra were 
similar. The difference between the two as-
sessments for L3, PS, ES, and MF for each 
observer did not vary in any systematic way 
over the range of measurement.

The reproducibility of the assessment of 
fat content in L3, PS, ES, and MF was high, 
and the ICCinter of the fat content was 0.984 
(95% CI, 0.967–0.992), 0.981 (95% CI, 0.960–
0.991), 0.977 (95% CI, 0.953–0.989), and 
0.998 (95% CI, 0.996–0.999), respectively 
(Table 3). The outcomes of the Bland-Altman 
plots and the ICCinter were similar. Bland-Alt-
man analysis according to individual reader 
showed only very slight mean biases (L3, 
0.1%; PS, 0.06%; ES, 0.1%; MF, 0.05%) (Figs. 
2–5). The difference (L3, 0.107%; PS, 0.062%; 
ES, 0.093%; MF, 0.054%) between the two 
assessments for L3, PS, ES, and MF of each 

observer did not vary in any systematic way 
over the measurement’s range (Table 3). 

Discussion
Muscular fat plays a significant role in 

the metabolic state of skeletal muscle and 
in metabolic disorders, such as type 2 dia-
betes, and is associated with high-intensity 
pain, low back pain, structural abnormality, 
and disability in the lumbar spine (37). The 
biochemical and physiological roles of the 
intramuscular adipose tissue are not fully 
known. However, this unique fat deposition 
may have a similar function as visceral adi-
pose tissue in terms of the risks of metabolic 
impairments, such as type 2 diabetes, and it 
may be an index of muscular dystrophy pro-
gression (23). And bone marrow fat plays an 
important role in bone loss. Consequently, 
accurate and noninvasive measurement of 

the fat content of the marrow and skeletal 
muscles is necessary for both exact detec-
tion of disease and exact grading of disease 
severity.

In this study, the reliability of fat content 
assessment in the lumbar vertebral mar-
row and the lumbar paraspinal muscles 
was evaluated using the mDIXON-Quant 
sequence. Our data demonstrated that 
measuring the fat content in the lum-
bar vertebral marrow and in the lumbar 
paraspinal muscles by utilizing the mDIX-
ON-Quant sequence is highly reliable, 
repeatable, and reproducible. This factor 
ensures reliable data collection in epide-
miologic surveys and in clinical practice 
when assessing muscle quality by moni-
toring morphologic changes, such as mus-
cular atrophy and fatty infiltration. In this 
study, all ICCintra and ICCinter values were 
greater than 0.9.

Baum et al. (38) recently reported that 
the fat content of L1–L5 was 38.8%±7.6% 
in males and 31.5%±12.4% in females. 
L3 marrow fat content in our study was 
35.05%±11.02%, which is consistent with 
their results. The fat content in the bone 
marrow usually increases with age. In other 
studies, the marrow fat was 60.4%±10.1% in 
L1–L4 (83 postmenopausal women, aged 
62.8±6.6 years) (39), 56.9%±7.0% in L1–L4 
(58 postmenopausal females, age range 
49.2–77.4 years) (40). In another study, we 
measured lumbar vertebral bone marrow 
fat content in males as 34.1%±8.4% for 21–
30 years up to 46.2%±7.4% for 61–70 years, 
and in females as 29.7%±7.1% for 21–30 
years up to 52.5%±8.2% for 61–70 years (41). 
In this study, the fat contents of PS, ES, and 
MF were 3.52%, 3.48%, and 3.53% for men 
and 3.40%, 7.06%, and 7.14% for women, re-
spectively. In the study of Fischer et al. (42), 
the fat content of the gastrocnemius muscle 
was 3.6%±4.7% in volunteers, and excellent 
linear correlation was shown for DIXON with 
phantoms and with MRS in patients. The 
mean fat percentage was 6%±1.6% for the 
nonaffected triceps brachii in the study of 
Duijnisveld et al. (10). Mengiardi et al. (43) 
reported the mean percentage fat content 
of the multifidus muscle as 14.5% (95% CI: 
10.8%, 18.3%) in the volunteers.

The MRI mDIXON-Quant technique has 
been widely utilized in other literatures to 
quantify hepatic steatosis and is increasingly 
utilized to quantify intramuscular fat (44–47) 
and bone marrow fat. The mDIXON-Quant 
imaging technique permits a more rapid and 
accurate assessment of the fat content of tis-

Table 2. Repeatability of L3 and paraspinal muscle fat fraction measurement with mDIXON imaging

Repeatability
Mean 

difference (%)

LoA

ICCintra

95% CI

Lower 
(%)

Upper 
(%) Lower Upper

L3 FF A1A2 -0.307 -0.625 0.010 0.997 0.993 0.998

L3 FF B1B2 -0.276 -1.628 1.077 0.948 0.897 0.975

PS FF A1A2 -0.061 -0.183 0.062 0.984 0.967 0.992

PS FF B1B2 -0.167 -0.307 -0.026 0.974 0.946 0.987

ES FF A1A2 -0.011 -0.173 -0.151 0.997 0.993 0.998

ES FF B1B2 -0.486 -0.950 -0.022 0.963 0.924 0.982

MF FF A1A2 -0.196 -0.343 -0.049 0.995 0.991 0.998

MF FF B1B2 -0.118 -0.291 0.054 0.995 0.989 0.997

L3, the third lumbar vertebra; mDIXON, multi-echo two-point Dixon sequence; LoA, limits of agreement;  
ICCintra, intraclass correlation coefficient; CI, confidence interval; FF, fat fraction; A1, first assessment of observer 
A; A2, second assessment of observer A; B1, first assessment of observer B; B2, second assessment of observer  
B; PS, psoas major muscle; ES, erector spinae;  MF, multifidus muscle. 

Table 3. Reproducibility of L3 and paraspinal muscle fat fraction measurement with mDIXON 
imaging

Reproducibility
Mean 

difference (%)

LoA

ICCinter

95% CI

Lower 
(%)

Upper 
(%) Lower Upper

L3 FF mA mB 0.107 -0.617 0.830 0.984 0.967 0.992

PS FF mA mB 0.062 -0.068 0.193 0.981 0.960 0.991

ES FF mA mB 0.093 -0.300 0.486 0.977 0.953 0.989

MF FF mA mB 0.054 -0.051 0.159 0.998 0.996 0.999

L3, the third lumbar vertebra; mDIXON, multi-echo two-point Dixon sequence; LoA, limits of agreement;  
ICCinter, interclass correlation coefficient; CI, confidence interval; FF, fat fraction; mA, mean assessment of observ-
er A; mB, mean assessment of observer B; PS, psoas major muscle; ES, erector spinae; MF, multifidus muscle.
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sue in a single sequence (34). This approach 
permits confirmation of the fat-to-water 
ratio and correction of T2* effects without 
the necessity for extra sequences to address 
mapping and potential misregistration of 
the image (34). The multiecho chemical 
shift-based water-fat separation techniques 
has been shown to be in good one-to-one 
agreement with the chemically calculated fat 
fraction in vitro in water-fat bone phantoms 
(R2=0.97) and with the MRS-based fat frac-
tion in vivo in the bone marrow of the prox-
imal femur (R2=0.87) and lumbar vertebrae 
(R2=0.959) (33, 39, 48). The study of Lee et al. 
(49) also show that fat fraction of phantoms 
measured with mDIXON MRI was strongly 
correlated with actual fat content of lumbar 
vertebrae (P < 0.01, R2 = 0.93). One study (42) 
demonstrated that mDIXON-Quant imaging 
allows accurate measurement of muscle fat 
content in a phantom as well as in patients 
and healthy volunteers. In that study, the in 
vivo results of mDIXON-Quant and MRS were 
closely and significantly matched. Another 
study (28) compared different DIXON-based 
fat quantification methods using MRS as the 
standard of reference, and found that mDIX-
ON-Quant imaging had good linearity and 
low variability when used to quantify intra-
muscular fat;  a low flip angle was suggested 
to be used to reduce T1 effects. Compared 
with MRS, in vitro in fat-water phantoms, all 
mDIXON sequences correlated significantly 
with MRS (r> 0.97, P < 0.002) (28). 

The mDIXON-Quant imaging technique 
potentially has significant advantages over 
MRS, such as fast volumetric coverage of 
the muscular anatomy, with the potential 
for postprocessing, such as multiplanar ref-
ormation (50). In addition, mDIXON-Quant 
imaging can obtain R2* mapping, which 
has multiple applications in MRI, such as for 
detecting superparamagnetic iron oxide, 
assessing blood oxygenation, and evaluat-
ing tissue iron levels (51). The study of Se-
rai et al. (52) shows that hepatic fat fraction 
measurement by utilizing mDIXON Quant 
and IDEAL IQ can be highly reproduced 
across imaging platforms, readers, and field 
strengths, with only minimal average bias 
that is probably clinically irrelevant in most 
cases. The potential causes of differences 
between two techniques include incom-
pletely corrected T1 bias, technical differ-
ences, and calculation differences (52).

The paraspinal muscle cross-section area 
is largest overall at the L3−L4 level (53). 
Therefore, we chose to measure the fat 
content in the lumbar vertebral marrow 

and lumbar paraspinal muscle on central 
L3 axial images. Analysis of the fat content 
was performed through ROI analysis. In the 
present study, we selected an anatomical 
approach and included the entire muscle 
in the ROI, based on the muscular compart-
ment’s outline.

One limitation of this study was that there 
was no histologic determination, especially 
of the fat content distribution in each indi-
vidual. However, biopsy is an invasive pro-
cedure, and is associated with a substantial 
degree of sampling error and complications, 
such as pain. Based on the above reasons, we 
did not perform biopsies for quantification 
of fat content. A second limitation is that the 
borders and position of the ROIs between 
each examination were not identical, which 
may lead to error in measurements. Finally, 
only 31 people were included. Larger sample 
sizes are certainly needed.

In conclusion, the repeatability and re-
producibility of fat content measurement 
in the lumbar vertebral marrow and lumbar 
paraspinal muscles utilizing mDIXON-Quant 
sequence were high. This technique may 
provide a new and easier approach for lum-
bar vertebral marrow and lumbar paraspi-
nal muscle fat content quantification, and 
it could help explore risks associated with 
diseases such as osteoporosis and diabetes.
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